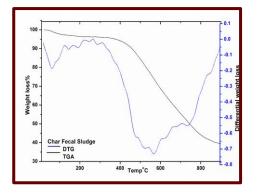
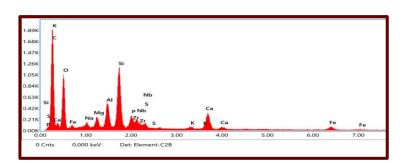
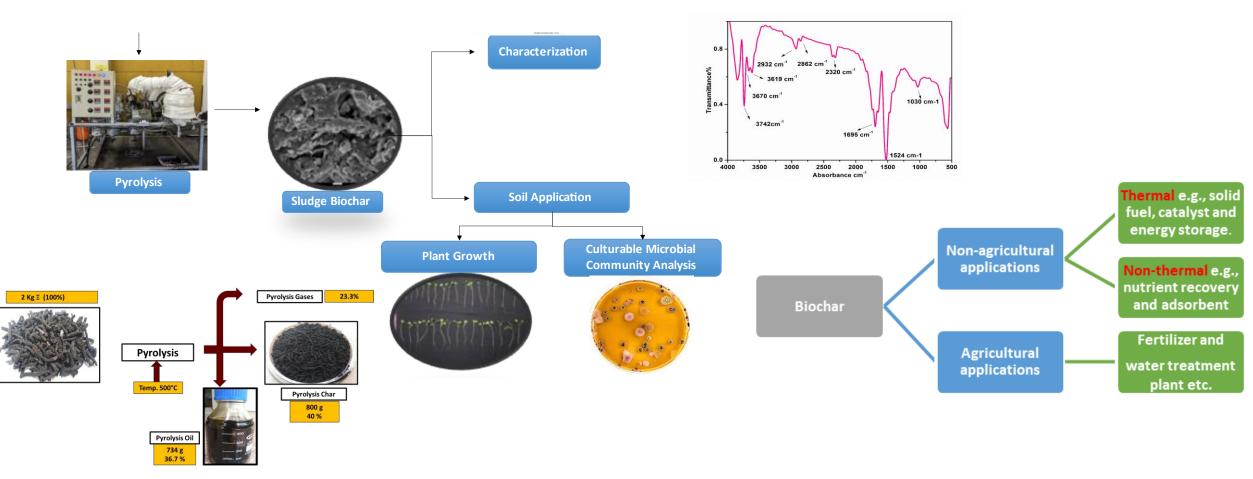

Biosolids Upcycling via Technological Integration: Feed Pre-treatment to Energy and Resources recovery

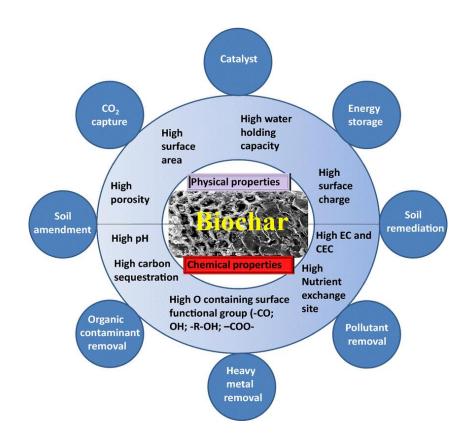
Dr. Abhishek Sharma

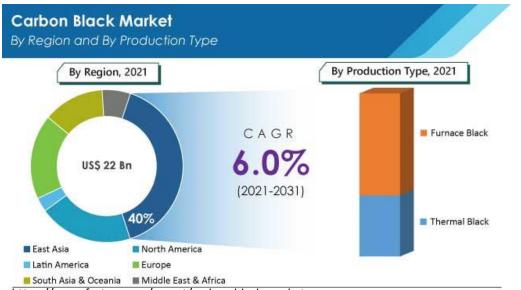

Professor, Department of Biotechnology and Chemical Engineering, MUJ Visiting Faculty, RMIT University Australia



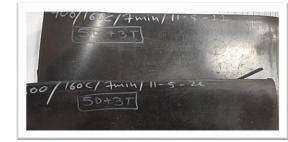

Sludge Management: Big Picture

Biosolids Upcycling





Non-Agricultural Applications


- Nutrient recovery
- Catalytic bio/chemical reactions
- Removal of pollutants from gas and liquid streams
- Additive to rubber and construction industries
- Secondary fuel for thermal processes
- Smart energy systems

Rubber Compounding

Compounding Ingredient	STD	Blank	Biochar @600	Biochar @700
SBR1502	100	100	100	100
ZnO	3	3	3	3
SA	2	2	2	2
SRF N774	50	0	0	0
Biochar	0	0	50	50
CBS	1.5	1.5	1.5	1.5
TBBS	0.5	1.5	0.5	0.5
SULPHUR	1.5	1.5	1.5	1.5

https://www.factmr.com/report/carbon-black-market

		STD	Blank	Biochar @600	Biochar @700	
Rheon	Rheometric Properties @160°C					
i)	Maximum Torque (MH)	14.19	59.75	11.3	13.4	
ii)	Minimum Torque (ML)	1.11	7.61	1.1	1.1	
iv)	TS2 (Minutes)	4.38	8.83	2.7	3.0	
v)	Tc90 (Minutes)	11.86	14.64	6.0	6.8	
Moldir	g time for slab@160°C, minutes	13	16	7	7	
Uncure	ed batch	Ok	Ok	Ok	Ok	
Surface	e finish of cured Sample	Ok	ОК	Ok	Ok	

Properties tested	Test Method	STD	Blank	Biochar @600	Biochar @700
Physical Properties on sample					
Hardness (Shore A)	ASTM D2240	63/64	46	58	60
Modulus at 100% (Kg/sq.cm)		23	9	19	20
Modulus at 200% (Kg/sq.cm)	ASTM	61		30	33
Modulus at 300% (Kg/sq.cm)	D412	113	16		
Tensile Strength (Kg/sq.cm)		123	18	40	43
Elongation at break(%)		320	350	300	283
Tear Strength (kg/cm)	ASTM D624	66	14	23	25

Construction

Additive to cement

Production of one tone of cement can emit one tone of CO_2 , and contributes to nearly 8% of global CO_2 emissions.

Biochar with high pH and high water-retention rate can absorb water during concrete mixing and release during hardening, which can result in stronger concrete.

Addition of 1% biochar:

Increased the compressive strength of structural concrete by 20%,

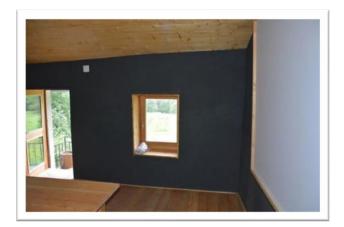
Increased the water permeability by 50%.

Fired clay bricks

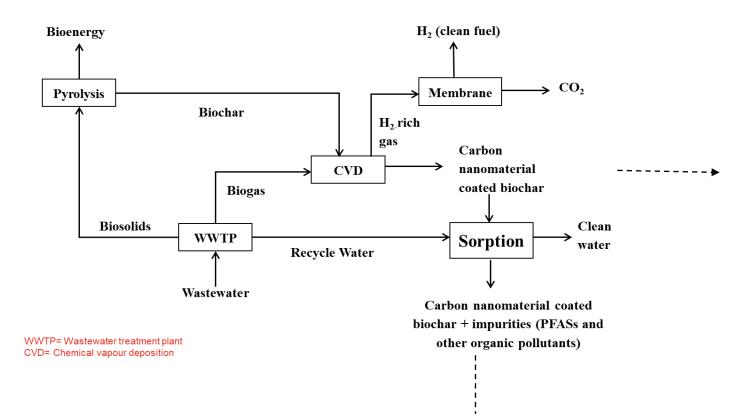
The volatiles present in biosolids have a calorific value of 12 MJ/kg which can be combusted to supply the energy required for firing (2 MJ/kg). Combustion of its volatiles increases the pore volume, thus giving rise to a reduced density and compressive strength of bricks (35.5 MPa for 10% biosolids which is significantly higher than the accepted value for low-rise buildings i.e. 5 MPa.)

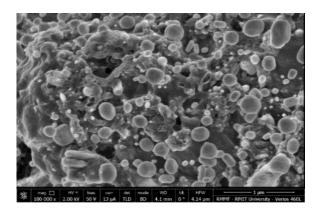
Locking carbon in bricks can help brick manufacturing industries to reduce their carbon footprint.

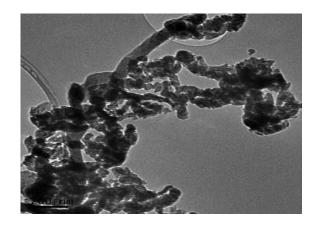
http://fingerlakesbiochar.com/



Plaster


Biochar has a extremely low thermal conductivity and high water holding ability. It can regulate the humidity, adsorb toxic compounds, conserve wood, cement, and plaster, reduce dust and electromagnetic radiation, insulate, act as an antibacterial and fungicide, and be a noise protector.


It stores carbon in buildings in a natural way. After demolishing a building, the biochar amended plaster can be composted, thus carbon cycle can be continued.


https://www.biochar-journal.org/en/ct/3

Circular Solution

	PFOS (µg/l)	PFOA (µg/l)	PFHxS (µg/l)
Initial Concentration	310	25	140
Biochar	38	9.7	50
Biochar + Carbon nanosphere	17	7.3	39
Ilmenite	110	19	130
Biochar + Ilmenite + CNS + CNF	43	14	97
Activated carbon (GAC)	0.52	0.07	0.18

Thank You

Contact:

Abhishek.Sharma@jaipur.manipal.edu Abhishek.Sharma@rmit.edu.au

